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Abstract

New finite-differences, called isotropic finite-differences, where the lowest order error terms are without any direc-

tional bias, are proposed. An accurate simulation of 6-fold symmetric dendritic solidification is presented using a

numerical scheme based on these finite-differences.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Various methods, e.g. compact schemes, Pad�e approximation, etc., have been followed to improve the

accuracy of the numerical simulation of partial differential equations (PDEs). These methods are generally
based on constructing higher order schemes. In the present work, we consider another aspect of the nu-

merical simulation, namely, the isotropy. In order to preserve the isotropy (or anisotropy) in the problem

being simulated the numerical scheme must not add its own anisotropy to the simulation. The numerical

scheme therefore should be isotropic (a numerical scheme is defined to be isotropic if it does not have a

directional preference). The notion of isotropy of the numerical scheme can be relevant to many simula-

tions, e.g. simulation of microstructural evolution, turbulence, etc.

When conventional finite-differences are used to discretise a PDE they introduce an anisotropy into the

numerical scheme. This anisotropy into the scheme comes from the directional bias of the error terms in the
discretisation. We propose new finite-differences, called isotropic finite-differences, where the lowest order

error terms are without any directional bias. (Due to discretisation a continuous problem is reduced to a

finite dimensional discrete problem. The discretisation therefore may achieve only a limited isotropy.) A

method to derive these finite-differences is given, and various formulae are obtained in two-dimension.

Dendritic solidification, a typical microstructural evolution problem, is a well studied topic [1–5]. A

simulation of 6-fold symmetric dendritic solidification is considered here to show the effect of numerical
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anisotropy. Since the physical symmetry of the problem must be preserved in the simulation, we accord-

ingly look for the 6-fold symmetry of the simulated solidification front. It is shown that when a numerical

scheme based on the directionally biased conventional finite-differences is used the 6-fold symmetry is not
well preserved in the simulation. On the other hand, using a scheme based on isotropic finite-differences, the

symmetry in the simulation is found to be well preserved. We note that improvement in the capturing of the

physical symmetry in the simulation is achieved here by making the numerical scheme isotropic, the order

of accuracy of the two schemes being the same.

The rest of the paper is organised as follows. Section 2 describes how the directional bias arises in a

numerical scheme, isotropic finite-difference formulae are derived in Section 3, the simulation of dendritic

solidification is considered in Section 4, and lastly, Section 5 gives the conclusions. Isotropic finite-difference

formulae in three-dimension are given in Appendix A.
2. Anatomy of a numerical discretisation

Let us consider a numerical scheme for the solution of the Laplace equation

wxx þ wyy ¼ 0; ð1Þ

where the subscripts denote the partial derivatives. Discretising the derivatives in the above PDE by the

conventional central differences, wxx ¼ ðwiþ1;j � 2wi;j þ wi�1;jÞ=h2; and wyy ¼ ðwi;jþ1 � 2wi;j þ wi;j�1Þ=h2,
where h is the step size, we obtain

1

h2
wiþ1;j

�
þ wi�1;j þ wi;jþ1 þ wi;j�1 � 4wi;j

�
¼ 0: ð2Þ

The discrete system (2), along with appropriate boundary conditions, are solved to obtain the numerical

solution of (1).

From a Taylor expansion, (2) represents

r2wþ h2

12
wxxxx

�
þ wyyyy

�
þ Oðh4Þ ¼ 0: ð3Þ

Eq. (3) is referred to as the modified PDE, the equivalent PDE one solves to obtain the numerical solution

of (1). Eq. (3) has a directional bias, which comes from the error terms. This anisotropy in the numerical

scheme would be present no matter how so ever small is h.
3. Isotropic finite-differences

We propose new finite-differences where the lowest order error terms are without any directional bias.
Various isotropic finite difference formulae are obtained in two-dimension. These formulae in two-

dimension, unlike conventional finite-differences, involve various points of the nine-point stencil. A sim-

ulation is presented later (Section 4) to test these finite-differences.

3.1. First derivative

Conventional finite difference formula for the first derivative is

ðwxCÞi;j ¼
1

2h
wiþ1;j

�
� wi�1;j

�
: ð4Þ
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The above formula involves only points along x-direction. From a Taylor expansion, Eq. (4), to Oðh2Þ, is
written as

ðwxCÞi;j ¼ 1

�
þ h2

6
oxx

�
ðwxÞi;j: ð5Þ

The anisotropy in a numerical scheme using the above finite-difference can arise from the term of Oðh2Þ.
We propose to obtain the isotropic finite difference of wx from

ðwxIÞi;j ¼ 1

�
þ h2

6
r2

�
ðwxÞi;j: ð6Þ

Note the similarity of the Eq. (6) to Eq. (5). Eq. (6), to Oðh2Þ, can be written as

ðwxIÞi;j ¼ 1

�
þ h2

6
oyy

�
1

�
þ h2

6
oxx

�
ðwxÞi;j ¼ 1

�
þ h2

6
oyy

�
ðwxCÞi;j:

The above in expanded form, to Oðh2Þ, is

ðwxIÞi;j ¼
1

2h
1

6
wiþ1;jþ1

��
� wi�1;jþ1

�
þ 4

6
wiþ1;j

�
� wi�1;j

�
þ 1

6
wiþ1;j�1

�
� wi�1;j�1

��
: ð7Þ

Eq. (7) is a Oðh2Þ accurate discretisation of wx. Unlike conventional finite-differences, it is seen to involve

points not only along the x-direction, but also along the y-direction.
The Taylor expansion of (7), up to Oðh2Þ, is given by (6). The leading order error term in (7) involves only

the Laplacian. We have referred (7) to be the isotropic finite-difference of wx, based on the notion that the

leading order error term has no directional preference. A numerical example is presented later (Section 4) to

test these so-derived isotropic finite-differences.

3.2. An example

Consider the finite differencing of the terms

awx þ bwy ;

which arise in many convection problems. The conventional finite-difference of the above is equivalent to

ðawx þ bwyÞC ¼ awx þ bwy þ
h2

6
ðawxxx þ bwyyyÞ

and the isotropic finite-difference is equivalent to

ðawx þ bwyÞI ¼ 1

�
þ h2

6
r2

�
ðawx þ bwyÞ:

As seen from the above Taylor expansion, the isotropic discretisation preserves the direction of propa-

gation to Oðh2Þ:

3.3. Second derivative

Conventional finite-difference of the second derivative is given by

ðwxxCÞi;j ¼
1

h2
wiþ1;j

�
� 2wi;j þ wi�1;j

�
;
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which from a Taylor expansion is equivalent to

ðwxxCÞi;j ¼ 1

�
þ h2

12
oxx

�
ðwxxÞi;j:

The isotropic finite-difference of wxx is obtained from

ðwxxIÞi;j ¼ 1

�
þ h2

12
r2

�
ðwxxÞi;j: ð8Þ

The above, to Oðh2Þ, is written as

ðwxxIÞi;j ¼ 1

�
þ h2

12
oyy

�
ðwxxC

Þi;j;

which gives

ðwxxIÞi;j ¼
1

h2
1

12
wiþ1;jþ1

��
� 2wi;jþ1 þ wi�1;jþ1

�
þ 10

12
wiþ1;j

�
� 2wi;j þ wi�1;j

�
þ 1

12
wiþ1;j�1

�
� 2wi;j�1 þ wi�1;j�1

��
: ð9Þ
3.4. Cross derivative

The conventional evaluation of the derivative wxy is given by

ðwxyCÞi;j ¼
1

4h2
wiþ1;jþ1

�
� wi�1;jþ1 � wiþ1;j�1 þ wi�1;j�1

�
:

A Taylor expansion of the above gives,

ðwxyCÞi;j ¼ 1

�
þ h2

6
r2

�
ðwxyÞi;j:

The derivative wxyC is therefore isotropic, and hence

ðwxyIÞi;j ¼ ðwxyCÞi;j: ð10Þ
3.5. Laplacian

The isotropic discretisation of the Laplacian is obtained from

r2
Iw ¼ ðwxxÞI þ ðwyyÞI: ð11Þ

Substituting from Eq. (9) we get

ðr2
IwÞi;j ¼

1

6h2
4
X
NN

w

 
þ
X
NNN

w� 20w

!
i;j

; ð12Þ

where NN in the first summation refers to nearest-neighbour points that lie along the axes, and NNN in the

second summation to next-nearest-neighbour points that lie along the diagonals.
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The discretisation (12) has been considered before [6]. It has also been used in [7] where it is stated to be

rotationally invariant. It may be noted that the discretisation (12) is obtained here by isotropic finite-

differencing the individual terms in the Laplacian.
Isotropic finite-differences, due to a larger foot-print, will in general lead to a more stable numerical

scheme. Consider, e.g. the heat conduction equation

ou
ot

¼ r2u:

Stability criterion for the above equation using the conventional central differences is known to be
Dt=h2 6 1=4, where Dt is the step size in t. When Eq. (12), the isotropic discretisation of the Laplacian, is

used, the stability criterion becomes Dt=h2 6 3=8. The stability is thus enhanced using the isotropic

discretisation.
4. Dendritic solidification

We present a simulation of 6-fold symmetric dendritic solidification to show the effect of anisotropy in
the numerical scheme on the simulation, and to test the isotropic finite-differences. We look for the 6-fold

symmetry in the simulated solidification pattern. A feature of the problem is the intense release of energy

(latent heat) at the solidification front.
4.1. Phase-field equations

The phase-field equations for dendritic solidification are:

ou
ot

¼ Dr2uþ 1

2

o/
ot

; ð13Þ
sðhÞ o/
ot

¼ r � W 2
0 A

2ðhÞr/
� �

� oF ð/; kuÞ
o/

� o

ox
W 2

0 AðhÞA0ðhÞ/y

� �
þ o

oy
W 2

0 AðhÞA0ðhÞ/x

� �
; ð14Þ

where u is the dimensionless temperature, and / the order parameter. The above equations are obtained

from the equations given in [4] by expressing the direction in terms of h, where h ¼ tan�1ð/y=/xÞ. AðhÞ for k-
fold symmetry (k ¼ 6 for 6-fold symmetry) is given by AðhÞ ¼ 1þ e cosðkhÞ; where e is the strength of

anisotropy, and sðhÞ ¼ s0A2ðhÞ. According to Model 2 of [4], we take oF =o/ ¼ �/ð1� /2Þ þ kuð1� /2Þ2,
a1 ¼ 1:25=

ffiffiffi
2

p
, and a2 ¼ 0:64. Further, k ¼ W0a1=d0, s0 ¼ W 3

0 a1a2=ðd0DÞ þ W 2
0 b0=d0. We take e ¼ 0:05,

b0 ¼ 0, W0 ¼ 1, D ¼ 2, and d0 ¼ 0:5.

4.2. Computational schemes

Two schemes, one based on the conventional central differences, and the other on the isotropic finite-
differences are considered. The derivatives in the above equations are discretised using the conventional

central differences in the scheme referred to as the conventional scheme, and using the isotropic finite-

differences in the scheme referred to as the isotropic scheme.

The term o/=ot, computed from (14), is used as the source term in (13). In (14) a small dissipative term is

added, and subtracted from its source term. The equations are integrated in time using an alternating-

direction implicit (ADI) scheme, described in Appendix B.
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4.3. Results and discussion

At t ¼ 0, a small circular seed (solid) in an undercooled liquid is taken, i.e., u ¼ 0, / ¼ 1 for radius
r < r0, and u ¼ �Df1� e�ðr�r0Þg, / ¼ �1 for rP r0, where r0 is the radius of the seed, and D is the und-

ercooling. We take D ¼ 0:8, and r0 ¼ 5.

A computational domain of 200� 200 is taken for 06 t6 150, which is progressively increased to

320� 320 for 1506 t6 250, and to 480� 480 for 2506 t6 400.

Solidification front (/ ¼ 0) obtained using the directionally biased conventional scheme on a grid with

step size h ¼ 0:4 is shown in Fig. 1. The solidification front is seen to be symmetric in the two coordinates.

(Note that a 4-fold symmetric solidification normally will not reveal the anisotropy in the numerical

scheme.) We assess the 6-fold symmetry of the simulated solidification front from the computed angle of
the second petal, counting the petals in the counter-clockwise direction, starting with the petal along the x-
axis. This angle is given in Table 1 for various t. This angle for the 6-fold symmetry should be 60�. The
computed angle of the second petal is seen to deteriorate with time. It is thus not well preserved in the

simulation.

We also investigate grid refinement for the improvement of the simulation. Computation on a fine grid

with h ¼ 0:2 is performed, taking about 900 h of CPU time on SGI Origin 3400, the final computational

grid being 2400� 2400. The computed angle of the second solidification petal is also given in Table 1. Some

improvements in the symmetry can be seen for small time, but it deteriorates with increasing time. Im-
provements in the computed angle for small time may suggest that a sufficiently fine grid can give a solution

of desired accuracy even though the numerical scheme is anisotropic; although we may achieve this at a

great computational cost.

Simulations using the scheme based on isotropic finite-differences are also carried out on the two grids

(h ¼ 0:4 and 0.2). Table 1 also gives the computed angle of the second petal in these simulations, which is

found to be remarkably well captured. A comparison of the solidification front given by the two schemes is

shown in Fig. 2, where the effect of numerical anisotropy in the conventional scheme simulation can be

seen. The isotropic scheme computation on the fine grid takes about 1000 h of CPU time.
-200 -100 0 100  200

-200

-100

0

100

200

Fig. 1. Solidification front obtained using the conventional scheme on the grid with h ¼ 0:4, and t ¼ 400.
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Fig. 2. Comparison of the solidification fronts on the fine grid (h ¼ 0:2) obtained using the isotropic scheme, –––, and the conventional

scheme, - - - - -. t ¼ 400.

Table 1

Computed angle of the second petal given by (a) the conventional scheme, and by (b) the isotropic scheme

h t

150 250 400

(a) Conventional scheme

0.4 58.94� 58.45� 58.10�
0.2 59.18� 58.97� 57.66�

(b) Isotropic scheme

0.4 60.04� 59.75� 59.77�
0.2 60.01� 59.93� 60.16�
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5. Conclusions

A simulation of 6-fold dendritic solidification is presented to show that due to the anisotropy in the

numerical scheme the physical symmetry of the problem is not well preserved in the simulation. A grid
refinement study is also presented.

We have proposed new finite-differences, called isotropic finite-differences. A scheme based on isotropic

finite-differences is also used for the above simulation, where the 6-fold symmetry is found to be easily

captured. An isotropic numerical scheme therefore may be necessary to capture the physical properties of

the problem in the simulation.
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Appendix A. Isotropic finite-differences in three-dimension

The conventional finite difference of wx is

ðwxCÞi;j;k ¼
1

2h
ðwiþ1;j;k � wi�1;j;kÞ;

which to Oðh2Þ gives

ðwxCÞi;j;k ¼ 1

�
þ h2

6
oxx

�
ðwxÞi;j;k:

Isotropic finite difference of wx is obtained from

ðwxIÞi;j;k ¼ 1

�
þ h2

6
r2

�
ðwxÞi;j;k:

We express the above, to Oðh2Þ, as

ðwxIÞi;j;k ¼ 1

�
þ h2

6
ozz

�
1

�
þ h2

6
oyy

�
ðwxC

Þi;j;k:

The above in expanded form is

ðwxIÞi;j;k ¼
1

2h
16

36
wiþ1;j;k

��
� wi�1;j;k

�
þ 4

36
fwiþ1;j;kþ1

�
þ wiþ1;j;k�1 þ wiþ1;jþ1;k þ wiþ1;j�1;kg

� fwi�1;j;kþ1 þ wi�1;j;k�1 þ wi�1;jþ1;k þ wi�1;j�1;kg
�

þ 1

36
fwiþ1;jþ1;kþ1

�
þ wiþ1;j�1;kþ1 þ wiþ1;jþ1;k�1 þ wiþ1;j�1;k�1g

� fwi�1;jþ1;kþ1 þ wi�1;j�1;kþ1 þ wi�1;jþ1;k�1 þ wi�1;j�1;k�1g
��
:

Similarly, isotropic finite difference of wxx is obtained from

ðwxxIÞi;j;k ¼ 1

�
þ h2

12
r2

�
ðwxxÞi;j;k:

The above, to Oðh2Þ, is expressed as

ðwxxIÞi;j;k ¼ 1

�
þ h2

12
ozz

�
1

�
þ h2

12
oyy

�
ðwxxCÞi;j;k;

which in expanded form is

ðwxxIÞi;j;k ¼
1

h2
100

144
wiþ1;j;k

��
� 2wi;j;k þ wi�1;j;k

�
þ 10

144
fwiþ1;j;kþ1

�
þ wiþ1;j;k�1 þ wiþ1;jþ1;k þ wiþ1;j�1;kg

� 2fwi;j;kþ1 þ wi;j;k�1 þ wi;jþ1;k þ wi;j�1;kg þ fwi�1;j;kþ1 þ wi�1;j;k�1 þ wi�1;jþ1;k þ wi�1;j�1;kg
�

þ 1

144
fwiþ1;jþ1;kþ1

�
þ wiþ1;j�1;kþ1 þ wiþ1;jþ1;k�1 þ wiþ1;j�1;k�1g � 2fwi;jþ1;kþ1 þ wi;j�1;kþ1

þ wi;jþ1;k�1 þ wi;j�1;k�1g � fwi�1;jþ1;kþ1 þ wi�1;j�1;kþ1 þ wi�1;jþ1;k�1 þ wi�1;j�1;k�1g
��
:
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Conventional finite difference of wxy is obtained from

ðwxyCÞi;j;k ¼
1

4h2
wiþ1;jþ1;k

�
� wi�1;jþ1;k � wiþ1;j�1;k þ wi�1;j�1;k

�
;

which to Oðh2Þ gives

ðwxyCÞi;j;k ¼ 1

�
þ h2

6
foxx þ oyyg

�
ðwxyÞi;j;k:

Isotropic finite difference of wxy is obtained from

ðwxyIÞi;j;k ¼ 1

�
þ h2

6
r2

�
ðwxyÞi;j;k:

The above is expressed as

ðwxyIÞi;j;k ¼ 1

�
þ h2

6
ozz

�
ðwxyCÞi;j;k;

which in expanded form is

ðwxyIÞi;j;k ¼
1

4h2
1

6
fwiþ1;jþ1;kþ1

�
� wi�1;jþ1;kþ1 � wiþ1;j�1;kþ1 þ wi�1;j�1;kþ1g

þ 4

6
fwiþ1;jþ1;k � wi�1;jþ1;k � wiþ1;j�1;k þ wi�1;j�1;kg

þ 1

6
fwiþ1;jþ1;k�1 � wi�1;jþ1;k�1 � wiþ1;j�1;k�1 þ wi�1;j�1;k�1g

�
:

An isotropic discretisation of the Laplacian can be obtained by combining the isotropic formulae for the

second derivatives

ðr2
IwÞi;j;k ¼

1

48h2
20
X
NN

w

 
þ 6

X
NNN

wþ
X
NNNN

w� 200w

!
i;j;k

;

where NN refers to the nearest-neighbour points, NNN to the next-nearest-neighbour points, and NNNN to

the next-next-nearest-neighbour points.

We once again note that the stability criterion for the heat conduction equation, which is Dt=h2 6 1=6
when the conventional central differences are used, is enhanced to Dt=h2 6 3=8 when the isotropic dis-

cretisation of the three-dimensional Laplacian is used.
Appendix B. ADI scheme

ADI scheme used in the present work is described. Consider the PDE

oU
ot

¼ a11Uxx þ a22Uyy � r:

Let Un be the solution at t ¼ tn. Using the ADI scheme the solution is advanced from tn to tnþ1 in two steps,

from tn to tnþ1
2
, and from tnþ1

2
to tnþ1. The integration from tn to tnþ1

2
is carried out as follows:
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Unþ1
2 � Un

1
2
Dt

¼ a
nþ1

2

11 Unþ1
2

xx þ an22U
n
yy � rnþ

1
2:

We define Unþ1
2
;m as the mth iterate of Unþ1

2. We solve the above equation as

2

Dt
Unþ1

2
;mþ1



� Un

�
¼ a

nþ1
2
;m

11 Unþ1
2
;mþ1

xx þ an22U
n
yy � rnþ

1
2
;m:

Let d ¼ Unþ1
2
;mþ1 � Unþ1

2
;m. d is then obtained from

a
nþ1

2
;m

11 dxx

 �

� 2

Dt
d ¼ � a

nþ1
2
;m

11 Unþ1
2
;m

xx



� rnþ

1
2
;m
�
� an22U

n
yy


 �
þ 2

Dt
Unþ1

2
;m



� Un

�
:

The above equation is solved as the tridiagonal system for each j. The left hand side of the tridiagonal

system can be written as

c21a
nþ1

2
;m

11


 �
di�1;j þ c20a

nþ1
2
;m

11

�
� 2

Dt

�
di;j þ c21a

nþ1
2
;m

11


 �
diþ1;j ¼ ðRHSÞi;j;

where RHS stands for the right hand side. We take c21 ¼ 1=h2; and c20 ¼ �2=h2 for the conventional

scheme, and c21 ¼ 10=ð12h2Þ; and c20 ¼ �20=ð12h2Þ for the isotropic scheme, and the solution is iterated

(note m) until a prescribed convergence. Dt is decreased if the iterations do not converge within a prescribed

mmax.

In the integration from tnþ1
2
to tnþ1 the following equation along j-direction is considered

anþ1;m
22 d�yy


 �
� 2

Dt
d� ¼ � anþ1;m

22 Unþ1;m
yy



� rnþ1;m

�
� a

nþ1
2

11 Unþ1
2

xx


 �
þ 2

Dt
Unþ1;m



� Unþ1
2

�
;

where d� ¼ Unþ1;mþ1 � Unþ1;m. Steps similar to going from tn to tnþ1
2
are followed.
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